Equi-gradient TD Learning
TD(\(\lambda\)) on adaptative Basis Functions Network

Manuel Loth,
Manuel Davy, Rémi Coulom, Philippe Preux

INRIA Sequel Lille, France

June 29th 2006
Introduction

- Kernel methods
- Reinforcement learning
Introduction

Kernel methods
new Regression method \sim kernel method
(regularized sample-based linear approximation)

Reinforcement learning
Kernel methods
new *Regression method* \(\sim\) kernel method
(regularized sample-based linear approximation)

*equi-gradient descent*

Reinforcement learning
Introduction

Kernel methods
new Regression method \( \sim \) kernel method
(regularized sample-based linear approximation)

equi-gradient descent

Reinforcement learning
Scheme for using it in \( TD(\lambda) \)
Kernel methods
new *Regression method* $\sim$ kernel method
(regularized sample-based linear approximation)

**equi-gradient descent**

Reinforcement learning
Scheme for using it in $TD(\lambda)$

**equi-gradient $TD(\lambda)$**
Regression
Regression

- unknown $f : \mathcal{X} \rightarrow \mathbb{R}$
Regression

- unknown $f : \mathcal{X} \to \mathbb{R}$
- samples $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
Regression

- unknown \( f : \mathcal{X} \rightarrow \mathbb{R} \)
- samples \((x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathbb{R}\)
- **accurate and simple** approximation \( \hat{f} \)
Regression

- unknown \( f : \mathcal{X} \to \mathbb{R} \)
- samples \((x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathbb{R}\)
- **accurate** and **simple** approximation \( \hat{f} \)

\[
\mathbf{y} = (y_1, \ldots, y_n)^T
\]

\[
\hat{\mathbf{y}} = (\hat{f}(x_1), \ldots, \hat{f}(x_n))^T
\]
Regression

- unknown $f : \mathcal{X} \to \mathbb{R}$
- samples $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
- accurate and simple approximation $\hat{f}$

$$y = (y_1, \ldots, y_n)^T$$

$$\hat{y} = (\hat{f}(x_1), \ldots, \hat{f}(x_n))^T$$

minimize $\mathcal{L}(y, \hat{y})$
Regression

- unknown \( f : \mathcal{X} \rightarrow \mathbb{R} \)
- samples \( (x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathbb{R} \)
- accurate and simple approximation \( \hat{f} \)

\[
y = (y_1, \ldots, y_n)^T
\]

\[
\hat{y} = (\hat{f}(x_1), \ldots, \hat{f}(x_n))^T
\]

minimize \( \mathcal{L}(y, \hat{y}) + \lambda \left| \hat{f} \right| \).
Regression

- unknown \( f : \mathcal{X} \rightarrow \mathbb{R} \)
- samples \((x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathbb{R}\)
- accurate and simple approximation \( \hat{f} \)

\[
\mathbf{y} = (y_1, \ldots, y_n)^T
\]
\[
\hat{\mathbf{y}} = (\hat{f}(x_1), \ldots, \hat{f}(x_n))^T
\]

minimize \( \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) + \lambda \| \hat{f} \| \).
Regression

- unknown $f : X \rightarrow \mathbb{R}$
- samples $(x_1, y_1), \ldots, (x_n, y_n) \in X \times \mathbb{R}$
- accurate and simple approximation $\hat{f}$

\[
\begin{align*}
\mathbf{y} &= (y_1, \ldots, y_n)^T \\
\hat{\mathbf{y}} &= (\hat{f}(x_1), \ldots, \hat{f}(x_n))^T
\end{align*}
\]

minimize $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) + \lambda |\hat{f}|$

kernel methods:
Regression

- unknown \( f : \mathcal{X} \rightarrow \mathbb{R} \)
- samples \((x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathbb{R}\)
- accurate and simple approximation \( \hat{f} \)

\[
\mathbf{y} = (y_1, \ldots, y_n)^T
\]
\[
\hat{\mathbf{y}} = (\hat{f}(x_1), \ldots, \hat{f}(x_n))^T
\]

minimize \( \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) + \lambda \left\| \hat{f} \right\| \)

kernel methods:
- \( k : \mathcal{X}^2 \rightarrow \mathbb{R} \sim \) similarity
unknown $f : \mathcal{X} \to \mathbb{R}$

samples $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$

accurate and simple approximation $\hat{f}$

$\mathbf{y} = (y_1, \ldots, y_n)^T$

$\hat{\mathbf{y}} = (\hat{f}(x_1), \ldots, \hat{f}(x_n))^T$

minimize $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) + \lambda \left\| \hat{f} \right\|$.

kernel methods:

- $k : \mathcal{X}^2 \to \mathbb{R} \sim$ similarity

- 1 basis function / learning point: $\phi_i(x) = k(x_i, x)$
Regression

- unknown $f : \mathcal{X} \rightarrow \mathbb{R}$
- samples $(x_1, y_1), \ldots , (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
- accurate and simple approximation $\hat{f}$

$$y = (y_1, \ldots , y_n)^T$$

$$\hat{y} = (\hat{f}(x_1), \ldots , \hat{f}(x_n))^T$$

minimize $L(y, \hat{y}) + \lambda \left\| \hat{f} \right\|$.

Kernel methods:

- $k : \mathcal{X}^2 \rightarrow \mathbb{R} \sim \text{similarity}$
- 1 basis function / learning point: $\phi_i(x) = k(x_i, x)$
- $\hat{f}(x) = \sum_i w_i \phi_i(x)$
regularized sample-based linear approximators
regularized sample-based linear approximators

- samples
regularized sample-based linear approximators

- samples $\sim$ basis functions $\phi_1, \ldots, \phi_m : \mathcal{X} \rightarrow \mathbb{R}$
regularized sample-based linear approximators

- samples $\sim$ basis functions $\phi_1, \ldots, \phi_m : \mathcal{X} \rightarrow \mathbb{R}$
- $\hat{f}(x) = \sum_i w_i \phi_i(x)$
regularized sample-based linear approximators

- samples \( \sim \) basis functions \( \phi_1, \ldots, \phi_m : \mathcal{X} \rightarrow \mathbb{R} \)
- \( \hat{f}(x) = \sum_i w_i \phi_i(x) \)

\[
\Phi = \begin{pmatrix}
\phi_1(x_1) & \ldots & \phi_m(x_1) \\
\vdots & \ddots & \vdots \\
\phi_1(x_n) & \ldots & \phi_m(x_n)
\end{pmatrix}, \quad \mathbf{w} = (w_1, \ldots, w_m)^T
\]
regularized sample-based linear approximators

- samples \( \sim \) basis functions \( \phi_1, \ldots, \phi_m : \mathcal{X} \to \mathbb{R} \)
- \( \hat{f}(x) = \sum_i w_i \phi_i(x) \)

\[
\Phi = \begin{pmatrix}
\phi_1(x_1) & \cdots & \phi_m(x_1) \\
\vdots & \ddots & \vdots \\
\phi_1(x_n) & \cdots & \phi_m(x_n)
\end{pmatrix}, \quad w = (w_1, \ldots, w_m)^T
\]

\[
\hat{y} = \Phi w
\]
regularized sample-based linear approximators

- samples $\sim$ basis functions $\phi_1, \ldots, \phi_m : X \rightarrow \mathbb{R}$
- $\hat{f}(x) = \sum_i w_i \phi_i(x)$

$$
\Phi = \begin{pmatrix}
\phi_1(x_1) & \cdots & \phi_m(x_1) \\
\vdots & \ddots & \vdots \\
\phi_1(x_n) & \cdots & \phi_m(x_n)
\end{pmatrix}, \quad w = (w_1, \ldots, w_m)^T
$$

$$
\hat{y} = \Phi w
$$

$$
\mathcal{L}(y, \Phi w) + \lambda \vert \Phi w \vert
$$
LASSO

\[ \mathcal{L}(y, \Phi w) + \lambda |\Phi w| \]
LASSO

$$(y - \Phi w)^2 + \lambda |\Phi w|$$
LASSO

\[(y - \Phi w)^2 + \lambda \sum_i |w_i| \quad \text{(LASSO)}\]
LASSO

\[(y - \Phi w)^2 + \lambda \sum_i |w_i| \quad \text{(LASSO)}\]

- Basis Pursuit
- Chen 95
LASSO

\[(y - \phi w)^2 + \lambda \sum_i |w_i|\]  \text{(LASSO)}

- Basis Pursuit \hspace{1cm} \text{Chen 95}
- Adaptative Ridge Regression \hspace{1cm} \text{Granvalet 98}
LASSO

\[(y - \Phi w)^2 + \lambda \sum_i |w_i| \quad \text{(LASSO)}\]

- Basis Pursuit \hspace{1cm} Chen 95
- Adaptative Ridge Regression \hspace{1cm} Granvalet 98
- Matching Pursuit \hspace{1cm} Mallat & Zhang 93
LASSO

\[(y - \Phi w)^2 + \lambda \sum_{i} |w_i| \quad \text{(LASSO)}\]

- Basis Pursuit \quad Chen 95
- Adaptative Ridge Regression \quad Granvalet 98
- Matching Pursuit \quad Mallat & Zhang 93
- iterative gradient descent \quad Osborne et al. 00
Equi-gradient descent

*Least-Angle Regression Stagewise/laSSO*
Equi-gradient descent

Least-Angle Regression Stagewise/laSSO

- Efron 2002 variable selection
Equi-gradient descent

Least-Angle Regression Stagewise/laSSO

- Efron 2002 variable selection
- Guigue 2005 kernelization
Equi-gradient descent

**Least-Angle Regression Stagewise/laSSO**
- Efron 2002 variable selection
- Guigue 2005 kernelization
- Generalization, simplification → *Equi-gradient descent*
Equi-gradient descent
Equi-gradient descent

Given $\lambda$
Given $\lambda$

Given $\text{sgn}(\mathbf{w}) = (0, 0, -1, 0, 1, \ldots)^T$
Equi-gradient descent

Given $\lambda$

Given $\text{sgn}(\mathbf{w}) = (0, 0, -1, 0, 1, \ldots)^T$

$\mathbf{w}_a = \textit{active}$ (non-zero) weights
Equi-gradient descent

Given $\lambda$
Given $\text{sgn}(\mathbf{w}) = (0, 0, -1, 0, 1, \ldots)^T$
$\mathbf{w}_a = \textbf{active}$ (non-zero) weights
$\Phi_a = \text{active basis functions}$
Given $\lambda$

Given $\text{sgn}(w) = (0, 0, -1, 0, 1, \ldots)^T$

$w_a = \textbf{active}$ (non-zero) weights

$\Phi_a = \text{active basis functions}$

$\hat{y} = \Phi_a w_a$
Equi-gradient descent

Given $\lambda$
Given $\text{sgn}(w) = (0, 0, -1, 0, 1, \ldots)^T$
$w_a = \text{active}$ (non-zero) weights
$\Phi_a = \text{active basis functions}$
$\hat{y} = \Phi_a w_a$

minimize $(y - \Phi_a w_a)^2 + \lambda \sum_i |w_i|$
Equi-gradient descent

Given $\lambda$

Given $\text{sgn}(\mathbf{w}) = (0, 0, -1, 0, 1, \ldots)^T$

$\mathbf{w}_a = \text{active} \ (\text{non-zero}) \ \text{weights}$

$\Phi_a = \text{active basis functions}$

$\hat{\mathbf{y}} = \Phi_a \mathbf{w}_a$

$$\text{minimize} \ (\mathbf{y} - \Phi_a \mathbf{w}_a)^2 + \lambda \sum_i |w_i|$$

$$\Phi_a^T(\mathbf{y} - \Phi_a \mathbf{w}_a) = \lambda \text{sgn}_a$$
Equi-gradient descent

Given $\lambda$

Given $\text{sgn}(w) = (0, 0, -1, 0, 1, \ldots)^T$

$w_a = \text{active}$ (non-zero) weights

$\Phi_a = \text{active basis functions}$

$\hat{y} = \Phi_a w_a$

minimize $(y - \Phi_a w_a)^2 + \lambda \sum_i |w_i|$

$\Phi_a^T(y - \Phi_a w_a) = \lambda \text{sgn}_a$

for all active $w_i$, $\left|\frac{\partial L}{\partial w_i}\right| = \lambda$
Equi-gradient descent

Given $\lambda$

Given $\text{sgn}(w) = (0, 0, -1, 0, 1, \ldots)^T$

$w_a = \textbf{active}$ (non-zero) weights

$\Phi_a = \text{active basis functions}$

$\hat{y} = \Phi_a w_a$

minimize $(y - \Phi_a w_a)^2 + \lambda \sum_i |w_i|$

$\Phi_a^T(y - \Phi_a w_a) = \lambda \text{sgn}_a$

for all active $w_i$, $\left| \frac{\partial L}{\partial w_i} \right| = \lambda$

for all inactive $w_i$, $\left| \frac{\partial L}{\partial w_i} \right| \leq \lambda$
Regularization path
Regularization path

samples

\((x_1, y_1)\) \quad (x_2, y_2)\)
Regularization path

samples

$(x_1, y_1)$  $(x_2, y_2)$
Regularization path

\[ (x_2, y_2) \]

\[ y_2 \]

\[ y_1 \]

\[ (x_1, y_1) \]

\[ (x_2, y_2) \]

\[ \text{samples} \]

\[ (x_1, y_1) \]

\[ (x_2, y_2) \]
Regularization path

\[ \begin{align*}
\phi_2(x_2) &\rightarrow y_2 \\
\phi_1(x_1) &\rightarrow y_1 \\
(x_2, y_2) &\text{ samples} \\
(x_1, y_1) &\text{ basis functions } \phi_1, \phi_2
\end{align*} \]
Regularization path

Samples
\((x_1, y_1)\) \((x_2, y_2)\)

Basis functions
\(\phi_1, \phi_2\)

Reg. coefficient \(\lambda\)
Regularization path

samples
$(x_1, y_1) \quad (x_2, y_2)$

basis functions
$\phi_1, \phi_2$

reg. coefficient $\lambda$
$\hat{f}_\lambda = w_1 \phi_1(x) + w_2 \phi_2(x)$
Regularization path

\[ (x_2) \]

\[ y_2 \]

\[ \hat{f}_\lambda(x_2) \]

\[ \phi_2(x_2) \]

\[ \Phi_1 \]

\[ \phi_2(x_1) \]

\[ \hat{f}_\lambda(x_1) \]

\[ y_1 \]

\[ \hat{y}_\lambda \]

samples

\[ (x_1, y_1) \quad (x_2, y_2) \]

basis functions

\[ \phi_1, \phi_2 \]

reg. coefficient \( \lambda \)

\[ \hat{f}_\lambda = w_1 \phi_1(x) + w_2 \phi_2(x) \]

\[ \hat{y}_\lambda = w_1 \Phi_1 + w_2 \Phi_2 \]
Regularization path

**Samples**
\((x_1, y_1) \quad (x_2, y_2)\)

**Basis functions**
\(\phi_1, \phi_2\)

**Regularization coefficient** \(\lambda\)
\(\hat{f}_\lambda = w_1 \phi_1(x) + w_2 \phi_2(x)\)
\(\hat{y}_\lambda = w_1 \Phi_1 + w_2 \Phi_2\)

**Path**
\(\{\hat{y}_\lambda\}_{0 \leq \lambda < \infty}\)
Regularization path

samples
$(x_1, y_1)$ $(x_2, y_2)$

basis functions
$\phi_1, \phi_2$

reg. coefficient $\lambda$

$\hat{f}_\lambda = w_1 \phi_1(x) + w_2 \phi_2(x)$
$\hat{y}_\lambda = w_1 \phi_1 + w_2 \phi_2$

path
$\{\hat{y}_\lambda\}_{0 \leq \lambda < \infty}$
Regularization path

\[ f_\lambda(x_2) \]

\[ f_\lambda(x_1) \]

\[ y \]

\[ y_\lambda \]

\[ \Phi_1 \]

\[ \Phi_2 \]

Linear parts
Regularization path

\[
\begin{align*}
(y_1) &= (x_1) + \beta y_2 \\
(y_2) &= f(x_2) \\
\hat{f}_\lambda(x_2) &= \Phi_1 \\
\hat{f}_\lambda(x_1) &= \Phi_2 \\
\end{align*}
\]

linear parts
constant signs

\[
\begin{align*}
\hat{y}_\lambda &= \text{equi-gradient descent} \\
\end{align*}
\]
Regularization path

\[ y_1 = \Phi_2 \]

\[ y_2 = \Phi_1 \]

linear parts
constant signs
direction = LS/residual

\[ \hat{f}_\lambda(x_2) \]

\[ (x_1) \]

\[ (x_2) \]

\[ \hat{f}_\lambda(x_1) \]

\[ y \]

\[ y_1 \]

\[ y_2 \]
Regularization path

\[ (x_2) \]
\[ y_2 \]
\[ \hat{f}_\lambda(x_2) \]
\[ \Phi_1 \]
\[ \Phi_2 \]
\[ (x_1) \]
\[ \hat{f}_\lambda(x_1) \]
\[ y_1 \]
\[ y \]

linear parts
constant signs
direction = LS/residual
break points
Regularization path

- Linear parts
- Constant signs
- Direction = LS/residual
- Break points
- New equi-gradient $\phi$

Equi-gradient descent
Equi-gradient TD(\(\lambda\))
Experiments
Conclusion
Regularization path

\[ \hat{f}_\lambda(x_2) \]

- **Linear parts**
- **Constant signs**
- **Direction** = LS/residual
- **Break points**
- New equi-gradient \( \phi \)
- Weight \( \rightarrow 0 \)
Regularization path
Complexity

Each step (activation/deactivation) is $O(|D| + |A|^2)$

- linear in dictionary size
- quadratic in number of active basis functions
Reinforcement Learning

- TD(λ)
- continuous state space
- discrete time
- updates after each trajectory
Radial Basis Functions Network

\[ \hat{V}(x) = \sum w_i \phi_i(x) \]
Radial Basis Functions Network

\[ \hat{V}(x) = \sum w_i \phi_i(x) \]
Update

\[ \hat{V}(x) = \sum (w_i + \Delta w_i) \phi_i(x) \]
Update

\[ \hat{V}(x) = \sum w_i \phi_i(x) + \sum \Delta w_i \phi_i(x) \]
Independant regression

temporal differences
Gradient descent on fixed basis network

temporal differences
Equi-gradient descent on extended network

temporal differences
Temporal regularization
Temporal regularization

Continuously add basis functions?!
Temporal regularization

*Continuously add basis functions*?!  
- Put a preference on existing basis functions
Temporal regularization

**Continuously add basis functions?!**

- Put a preference on existing basis functions
- Remove zero-weighted basis functions
Temporal regularization

**Continuously add basis functions?!**

- Put a preference on existing basis functions
  \[ \phi_i \leftarrow \rho \phi_i \]
- Remove zero-weighted basis functions
Temporal regularization

**Continuously add basis functions?!**

- Put a preference on existing basis functions
  \[ \phi_i \leftarrow \rho \phi_i \Rightarrow w_i \leftarrow \frac{1}{\rho} w_i \]
- Remove zero-weighted basis functions
Preliminary simple experiments
Preliminary simple experiments

- Inverted pendulum
- Gaussian basis functions on normalized state space
- Updates after each episode
- Stopping EG descents at $|\hat{y}|^2 = 70\%|y|^2$
Experiments: preference

The graph illustrates the cumulative rewards and active features over episodes. The x-axis represents the episode number, ranging from 0 to 300, while the y-axes show the cumulative rewards and active features. The lines correspond to different values, with each line labeled for distinction.
Experiments: multi-kernels
Experiments: symmetry

![Graph showing cumulated rewards and active features over episodes.](image)

- **Cumulated Rewards**
  - No symmetry: Red line
  - Symmetry: Green dotted line

- **Active Features**
  - Episode # 0 to 300

The graph compares the performance of two scenarios: one without symmetry and one with symmetry. The cumulated rewards increase with each episode, and the number of active features stabilizes over time.
Experiments: comparison

![Comparison Graph](image-url)

- GPTD
- TD
- EGTD

[Graph Description]

Introduction
Equi-gradient descent
Equi-gradient TD(λ)
Experiments
Conclusion
Experiments: comparison
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Equi-gradient descent</th>
<th>Equi-gradient TD((\lambda))</th>
<th>Experiments</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

**Conclusion**
Conclusion

**Summary:**
Conclusion

**Summary:**

- **efficient** and **easy** way to select basis functions in TD(\(\lambda\))
Summary:
• efficient and easy way to select basis functions in TD(\(\lambda\))
• robust, no unintuitive parameters
Conclusion

Summary:
- **efficient** and **easy** way to select basis functions in TD($\lambda$)
- **robust**, no unintuitive parameters

Perspectives:
Conclusion

**Summary:**

- **efficient** and **easy** way to select basis functions in TD($\lambda$)
- **robust**, no unintuitive parameters

**Perspectives:**

- experiments on other problems
Conclusion

**Summary:**
- **efficient** and **easy** way to select basis functions in TD(λ)
- **robust**, no unintuitive parameters

**Perspectives:**
- experiments on other problems
- automatically build basis function dictionary based on topology, TD variance, . . . (wavelets, low-dimensional projections, . . .)
Take home message

- Feature selection is easy!
- Basic use of it in RL $\rightarrow$ efficient & easy-to-tune TD($\lambda$)